Est-ce que l'intégrale peut être négative ?

Interrogée par: Aurélie Leclercq  |  Dernière mise à jour: 21. März 2024
Notation: 4.7 sur 5 (32 évaluations)

Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.

Est-ce qu'une intégrale peut être négative ?

Comme une intégrale détermine une aire, elle ne peut pas être négative. Note : on utilise une primitive sans constante inutile : on voit bien qu'elle serait soustraite à elle-même. Notez que cette fonction est négative sur l'intervalle étudié.

Comment savoir si une intégrale est positive ou négative ?

Si la fonction est positive sur l'intervalle d'intégration, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative sur l'intervalle d'intégration, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.

Comment déterminer le signe de l'intégrale ?

Conclure sur le signe de l'intégrale

On applique la positivité de l'intégration : Si f est positive sur \left[ a;b \right], \int_{a}^{b} f\left(x\right) \ \mathrm dx est positive. Si f est négative sur \left[ a;b \right], \int_{a}^{b} f\left(x\right) \ \mathrm dx est négative.

Quand une intégrale est nulle ?

Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.

Aire sous la courbe et intégrale négative

Trouvé 36 questions connexes

Quelle est la différence entre une primitive et une intégrale ?

La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).

Est-ce que la fonction nulle est dérivable ?

En mathématiques, une fonction continue nulle part dérivable est une fonction numérique qui est régulière du point de vue topologique (c'est-à-dire continue) mais ne l'est pas du tout du point de vue du calcul différentiel (c'est-à-dire qu'elle n'est dérivable en aucun point).

Est-ce qu'une intégrale est toujours positive ?

On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.

Est-ce que l'intégrale d'une fonction positive est positive ?

Propriété de positivité

En d'autre termes, l'intégrale d'une fonction positive sur un intervalle est positive, ce qui est logique dans la mesure où elle s'interprète comme une aire (voir le début du cours).

Pourquoi l'intégrale est une somme ?

Pour conceptualiser l'intégrale, il faut imaginer que tu resserres de plus en plus l'espace vide qui subsiste entre ces points (en en rajoutant plein), jusqu'à ce que tu passes d'un point à un autre sans voir la différence. L'intégrale est en fait une somme qui se calcule généralement sur un ensemble infini.

Comment savoir si une fonction est négatif ?

Elle est positive entre nos deux premiers zéros et lorsqu'elle est supérieure au troisième zéro. La fonction est négative quand elle est inférieure à notre premier zéro ou entre notre deuxième zéro et notre troisième zéro.

Comment savoir si une fonction est négative ?

Rappelons que le signe d'une fonction est négatif sur un intervalle si la valeur de la fonction est inférieure à 0 sur cet intervalle. Pour résoudre cette équation d'inconnue 𝑥 , on tente de l'écrire sous la forme d'un produit de deux expressions du premier degré.

Comment montrer qu'une fonction définie par intégrale est bien définie ?

1. pour tout x ∈ I, la fonction t ↦→ f(x, t) est continue par morceaux sur J ; 2. pour tout t ∈ J, la fonction x ↦→ f(x, t) est continue sur I ; 3. il existe une fonction ϕ positive, continue par morceaux et intégrable sur J telle que: ∀(x, t) ∈ I × J,|f(x, t)| ≤ ϕ(t).

Quand Est-ce qu'une intégrale est négative ?

Ainsi, si a<b et que f(x)>=0 sur [a,b] alors l'intégrale de f entre a et b est positive, et si f(x)<=0 sur [a,b] alors l'intégrale de f entre a et b est négative.

Comment interpréter une intégrale ?

Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.

Comment calculer l'aire sous la courbe d'une fonction ?

L'aire 𝛽 sous la courbe et entre 𝑥 = 𝑎 et 𝑥 = 𝑏 est donnée par 𝛽 = 𝐹 ( 𝑏 ) − 𝐹 ( 𝑎 ) .

Comment savoir si une fonction est positif ?

On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).

Comment montrer que l'intégrale est continue ?

Soit I un intervalle de R et f:I→R f : I → R . On dit que f est uniformément continue si ∀ε>0, ∃η>0, ∀(x,y)∈I2, |x−y|<η⟹|f(x)−f(y)|<ε.

Comment savoir si une intégrale converge ou diverge ?

Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.

Est-ce qu'une fonction continue est intégrable ?

Critères d'intégrabilité

Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.

Quelle fonction n'est pas dérivable ?

Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.

Comment savoir si c'est dérivable ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).

Quand la dérivée est nulle ?

si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.

Qui a inventé le calcul intégral ?

Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.

Quel est l'intérêt de calculer l'intégrale ?

L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.